
the cloud is a steamy pile of shit 
lttle.cloud | the manifesto 
 
 
hello, Steve! please have a seat! it’s been a long time since we 
last spoke. how have you been? 
 
[Steve]: I’m good, tha— 
 
[interrupting with a burst of excitement] yeah yeah, I’ve been good 
too. i’m working on this… thing. it’s called lttle.cloud. i’ve 
been so frustrated with the cloud lately, and i just couldn’t 
take it anymore. 
 
[Steve, looking confused]: what do you mean? why? what’s wrong with 
the cloud? 
 
[ACT I: paying for idle] 
yeah. well. there are multiple problems, but for starters, we’re 
literally drowning in inefficiencies. let’s say you’re just done 
building the mvp for the next unicorn; but, before you can quit 
your job and go full in on your ai girlfriend saas, there is one 
more step you need to take. you have to deploy your app, and most 
of the time, that means getting it in the cloud. 
 
so, you do that. you rent a small ec2 instance on aws, get a 
domain, and wait for the customers and money to start rolling in. 
and you wait, and you wait a little longer, but no users are 
coming. maybe your idea wasn’t as good as you thought, maybe the 
marketing wasn’t good, what’s certain is that you don’t make any 
money. 
 
but do you know who makes money? aws. if your vm does useful work 
(aka serve requests for your users), or it sits idle, it doesn’t 
matter—you’re billed the same amount. and given that you don’t 

 

https://hello.lttle.cloud


 

have any users yet, you’re literally throwing money in the 
trashcan. 
 
[ACT II: scaling is a dangerous road] 
but, let’s say that suddenly, your ai girlfriend app blows up on 
the waifu subreddit. if we do some basic math, we get the 
following: users = traffic = useful work. problem solved, right? 
 
that’s true… but there’s a bit more math we need to do: 
if users = traffic = useful work, that implies that more users = 
more traffic = more useful work, and that implies that even more 
users = even more traffic = … too much useful work. 
 
while we were focused on saving money, we forgot about scaling. 
so, let’s scale up. just spin up a few more machines and add a 
load balancer in front. 
 
now, the app is blazingly fast™ and the users are happy. money 
starts rolling in. 
 
but while we were focused on scale, we lost focus on the wallet 
again. looking at the traffic patterns, you see that for whatever 
reason, your workload spikes in 5–10 minute bursts, during only 
the night (weird crowd, i know). you are overprovisioning, so 
even if you have a lot of users, you’re still paying for idle and 
losing money overall. seems like we just can’t catch a break. 
 
but what about autoscaling? we can create an ec2 autoscaling 
group and set a minimum number of replicas and a maximum number 
of replicas. the group will scale up/down based on the load. 
 
could work, but the cloud strikes again! your traffic is not 
predictable—it changes on a scale of milliseconds, but the 
autoscaler can react on a scale of tens of seconds or even 
minutes. this means that you could be scaling up to handle a 



 

burst, and the burst could be over before you’re done scaling up. 
heck, it takes 30 seconds or more to even start a freaking vm on 
aws. 
 
[Steve]: ah i see. well, maybe you should’ve started with 
serverless. 
 
[ACT III: the lies of serverless] 
maybe you’re right. maybe. the promise of serverless is just so 
good. almost too good to be true. pay only for what you use, 
scale infinitely to handle any amount of load you might 
encounter. 
 
a model so simple and powerful: 1 request = 1 instance; it starts 
when the request comes, and it gets killed when it’s done 
 
but, there’s a tiny problem (or a few). serverless is a lie. 
 
let’s pick aws lambda as an example, but this applies to the 
other serverless offerings too (gcp functions and whatever azure 
has). 
 
when you make a request, if no lambda is already available, aws 
has to spin up an instance with your code before it can handle 
the request. 
 
this is called a cold start, and it can take (depending on your 
runtime) from a few hundred milliseconds to a few seconds. cold 
starts directly translate to a degraded user experience, as we 
just introduced a massive latency in the hot path. even if your 
code can deliver a response in < 10ms, it doesn’t matter—lambda 
will add at least 200ms on top of it. we have, again, idle time. 
 
and i think you’re used to this by now, but who do you think pays 
for idle time? you, of course. 



 

 
but wait, it gets even worse. by default, a lambda has a request 
concurrency of 1. yep. you heard me right. your cloud spins up a 
lambda instance to handle a request, and while it does that, if 
another request comes, it needs to spawn another lambda. 
 
however, after the request is done, the lambda hangs around for a 
few minutes (we call this a warm lambda), just in case new 
requests arrive. say it with me: idle time, again! and again, you 
pay for this! 
 
there is a way to avoid the penalties of cold starts, by having a 
timer service sending requests regularly to your lambda. aws 
conveniently offers a feature in cloudwatch that can do just 
that. 
 
keep in mind this doesn’t work if, god forbid, you get hit by 
concurrent requests, because you are warming only one lambda. you 
can keep multiple lambdas warm to avoid this, but at this point, 
you might as well go back to regular vms or containers. 
 
do you even hear the stupidity of this? cold starts are their 
problem, and yet, you pay the price. 
 
so, here’s a quick recap: you can deploy your app in the simplest 
way possible on a vm, but you’ll pay for idle, and you won’t be 
able to scale with usage demand. or, you can use autoscaling, but 
it’s too slow and you still pay for idle. or, you can use 
serverless alternatives, but you’ll be hit with complexity, cold 
starts, and you’ll still pay for idle. choose your poison. 
 
[Steve]: man, that’s sad. 
 
yeah. our pain is making it rain money for jeff bezos. we’re 
drowning in inefficiency and they don’t do anything about it. 



 

why? because it works and because it’s profitable. there’s no 
incentive for them to improve their services. why would they? 
there’s no alternative. it’s not like everyone can build their 
own cloud. 
 
[ACT IV: a walled garden] 
and even if you make it work on one cloud, you will be so tied to 
that cloud’s services, that switching will be… at least not easy. 
 
you start with a lambda, and of course you’ll also need an api 
gateway. most likely your app will need file storage, so let’s 
plug an s3 bucket into the mix. you might also want to use their 
service x but to do that you need to connect it to your lambda 
with their event bus product. or, you might need to put your 
lambdas (multiple at this point) in a vpc to access private 
resources in your infrastructure, like a database. but if you 
want to connect to other public services from your lambdas, you 
need to add an internet gateway to your vpc. what? your app is 
slow? maybe it’s time to move that database in aws too, and while 
you’re at it, why not add a managed redis instance to cache some 
of the slow operations? need indexing or search? no problem, use 
their managed elastic stack alternative. what? your company 
launched a satellite and you need radio communications with it? 
no problem. aws ground station to the rescue. your satellite 
operations plugged directly in your cloud stack. 
 
and if you want to move from on-premise to aws but you have 
petabytes of data, there’s no problem. you can rent a freaking 
truck filled with ssds from aws, load it up at your on-prem 
location, send it back to aws and they will bulk import that on 
your shiny cloud stack. this is not a joke. i’m not making this 
up. it’s called aws snowball, look it up. 
 
there is no escaping the cloud once you’re that deep into it. 
it’s almost like they are doing this intentionally… 



 

 
they want to build this walled garden, but they invested so much 
time in the wall, and so little in the garden that instead we get 
a tightly fenced, huge and steamy pile of shit. 
 
you can’t escape the cloud… i can’t escape the cloud. they got us 
good. 
 
[ACT V: the reveal] 
so yeah, i’m building a cloud to solve these problems. 
 
[Steve, searching for his words]: wait, what?? didn’t you say it’s not 
possible? 
 
i didn’t say you can’t do it. i only said it would be hard, and 
not worth it for everybody to build themselves one. 
 
imagine a serverless-like platform, with a few twists: 
- it uses hardware-level isolation for workloads, this is a must 

for multi-tenancy. no containers, not good enough. 
- it has no cold starts. your workload always starts in less 

than 10ms from when a request arrives. also, it can handle 
concurrent requests, autoscaling, and it has a timeout of less 
than 10 seconds before killing the instance. you truly only 
pay for what you use. 

- you can deploy your app or other services (like postgres and 
redis) with 0 modifications. just ship it as a docker image. 

- designed to provide very high density of guests on the same 
host (well into the thousands). 

 
now, what if i told you that you can already try this out here. 
it’s just a demo for now, but the runtime is fully functional. 
you can read more about the crazy tech that makes it work here. 
 

https://hello.lttle.cloud
https://github.com/lttle-cloud/ignition


 

[Steve]: ok, ok! let’s say that this runtime mostly solves the 
problem with the inefficient cloud, but what about the walled 
garden? won’t you end up just creating another hard-to-escape 
cloud offering? 
 
no. and here’s why. i’m not providing the hosts that run the 
workloads. you are. 
 
people that want to run workloads pay for exactly for what they 
use. people that want to offer compute, storage, and network 
primitives get most of that payment as a reward and a small fee 
is retained by the network. 
 
the entire cloud is a distributed network, based on the 
multiversx blockchain, so everything is secure and transparent, 
as you would expect. we use the blockchain to attest changes to 
the workloads, network structure, configuration changes, etc. 
however, the blockchain is never in the hot path. your user’s 
requests go straight to a proxy node, and then, via an internal 
network fabric, to the compute node that will run that workload. 
 
to ensure resilience, the storage volumes are replicated across 
multiple nodes, from multiple regions and providers. to be 
accepted as a node in the network, the provider needs to stake a 
certain amount of money. if a node is underperforming or it fails 
to execute some workloads, it will receive penalties deducted 
from the staked amount. 
 
everything is built in public, open-sourced with a permissive 
license. the runtime prototype is already available here. 
 
you can build your own cloud if you want. start your own private 
network, just for you. or, you can contribute to the main 
network, join the cloud compute revolution and get paid for it. 
 

https://github.com/lttle-cloud/ignition


 

steve, still with me? you’ve been silent for some time. tell me, 
what do you think? 
 
[Steve]: 


